References
<A NAME="RU14202ST-1A">1a</A>
Fruchtel JS.
Jung G.
Angew.
Chem., Int. Ed. Engl.
1996,
35:
17
<A NAME="RU14202ST-1B">1b</A>
Thompson LA.
Ellman JA.
Chem.
Rev.
1996,
96:
555
<A NAME="RU14202ST-2">2</A>
Han H.
Wolfe MM.
Brenner S.
Janda KD.
Proc. Natl. Acad. Sci. U.S.A.
1995,
92:
6419
<A NAME="RU14202ST-3A">3a</A>
Wentworth J.
Janda KD.
Chem.
Commun.
1999,
1917
<A NAME="RU14202ST-3B">3b</A>
Geekeler KE.
Adv. Polym. Sci.
1995,
121:
31
Reviews on liquid-phase organic
synthesis (LPOS):
<A NAME="RU14202ST-4A">4a</A>
Gravert DJ.
Janda KD.
Chem.
Rev.
1997,
97:
489
<A NAME="RU14202ST-4B">4b</A>
Harwig CW.
Gravert DJ.
Janda KD.
Chemtracts: Org. Chem.
1999,
12:
1
<A NAME="RU14202ST-4C">4c</A>
Gravert DJ.
Janda KD. In
Molecular Diversity and Combinatorial Synthesis:
Libraries and Drug Discovery
Chaiken IM.
Janda KD.
ACS
Symp. Ser., American Chemical Society;
Washington D.C.:
1996.
p.118-127
<A NAME="RU14202ST-4D">4d</A>
Vandersteen AM.
Han H.
Janda KD.
Mol. Diversity
1996,
2:
89
<A NAME="RU14202ST-4E">4e</A> For a recent example of
LPOS, see:
Annunziata R.
Benaglia M.
Cinquini M.
Cozzi F.
Chem.-Eur. J.
2000,
6:
133
<A NAME="RU14202ST-5">5</A> MeOPEG is not soluble in THF or CH2Cl2 at -78 °C.
To circumvent this problem Janda et al have successfully used noncross-linked
chloromethylated polystyrene (NCPS) as a soluble polymer support.
See:
Chen S.
Janda KD.
J.
Am. Chem. Soc.
1997,
119:
8724
<A NAME="RU14202ST-6">6</A>
Zhao XY.
Metz WA.
Sieber F.
Janda KD.
Tetrahedron Lett.
1998,
39:
8433
<A NAME="RU14202ST-7A">7a</A>
Shang YJ.
Wang YG.
Tetrahedron
Lett.
2002,
43:
2247
<A NAME="RU14202ST-7B">7b</A>
Shang YJ.
Wang YG.
Synthesis
2002,
1663
<A NAME="RU14202ST-8">8</A>
Xia M.
Wang YG.
Tetrahedron Lett.
2002,
43:
7703
<A NAME="RU14202ST-9">9</A>
Messer S.
Abuh YF.
Liu Y.
Periyasamy S.
Ngur DO.
Edgar MAN.
El-Assadi AA.
Sebeih S.
Dunbar PG.
Roknich S.
Rho T.
Fang Z.
Ojo B.
Zhang H.
Huzl JJ.
Nagy PI.
J. Med. Chem.
1997,
40:
1230
<A NAME="RU14202ST-10">10</A>
Watjen F.
Baker R.
Engelstoff M.
Herbert R.
Macleod A.
Knight A.
Merchant K.
Moseley J.
Swain CJ.
Wong E.
Springer JP.
J.
Med. Chem.
1989,
32:
2282
<A NAME="RU14202ST-11">11</A>
Clitherow JW.
Beswick P.
Irving WJ.
Scopes DIC.
Barnes JC.
Clapham J.
Brown DJ.
Hayes AG.
Bioorg.
Med. Chem. Lett.
1996,
6:
833
<A NAME="RU14202ST-12">12</A>
Diana GD.
Volkots DL.
Nitz TJ.
Bailey TR.
Long MA.
Vescio N.
Aldous S.
Pevear DC.
Dutko FJ.
J. Med. Chem.
1994,
37:
2421
<A NAME="RU14202ST-13">13</A>
Andersen KE.
Lundt BF.
Joergensen AS.
Braestrup C.
Eur. J.
Med. Chem.
1996,
31:
417
<A NAME="RU14202ST-14">14</A>
Chiou S.
Shine HJ.
J. Heterocycl. Chem.
1989,
26:
125
<A NAME="RU14202ST-15">15</A>
Liang GB.
Feng DD.
Tetrahedron Lett.
1996,
37:
6627
<A NAME="RU14202ST-16">16</A>
Deegan TL.
Nitz TJ.
Cebzanov DE.
Porco JA.
Bioorg.
Med. Chem. Lett.
1999,
9:
209
<A NAME="RU14202ST-17">17</A>
Christian KS.
Jesper L.
Tetrahedron Lett.
1999,
40:
9359
<A NAME="RU14202ST-18">18</A>
Normand H.
Amy H.
Scott CS.
Tetrahedron
Lett.
1999,
40:
8547
<A NAME="RU14202ST-19">19</A>
The polymer supported aldehyde was
characterized by 500 MHz 1H NMR analysis in
CDCl3:δ = 8.19 (s,
1 H), 8.12 (d, J = 8.3
Hz, 2 H), 7.71 (d, J = 8.3
Hz, 2 H), 4.53 (t, J = 4.7 Hz,
2 H, -PEGOCH2CH
2CO),
3.70-3.90 (m, PEG) ppm. The polymer supported imine 2c (R = p-FC6H4) was characterized
by 500 MHz 1H NMR analysis in CDCl3: δ = 8.51
(s, 1 H), 8.15 (d, J = 8.1
Hz, 2 H), 7.96 (d, J = 8.1 Hz,
2 H), 7.26 (m, 2 H), 7.11 (m, 2 H), 4.51 (t, J = 4.7
Hz, 2 H, -PEGOCH2CH
2CO),
3.50-3.78 (m, PEG) ppm.
<A NAME="RU14202ST-20">20</A>
Typical Procedure
for the Synthesis of 1,2,4-Oxadiazolines: N-Chlorosuccinimide
(NCS, 2 mmol) was stirred in a flask containing dry CH2Cl2 (5
mL). The oxime (2 mmol) was added at 25 °C in
one portion.The polymer-supported acrylate (0.25 mmol) was added
in one portion after the chlorination was over. Usually after ca
30 min, Et3N (0.14 mL in 2 mL of CH2Cl2)
was added drop by drop over ca 2 h. The reaction mixture was stirred
overnight at r.t. To this was added a five fold excess of dry benzene
and the resulting triethylamine hydrochloride was removed by filtration.
The solution was concentrated and Et2O was added to afford
the polymer-supported 1,2,4-oxadiazolines 3.
The resin 3 is then cleaved with CH3ONa/CH3OH
at r.t. to give the desired 1,2,4-oxadiazolines 4.
Compound 3a:
1H
NMR (500 MHz, CDCl3): δ = 8.13
(d, J = 8.0
Hz, 2 H), 7.67 (d, J = 8.0
Hz, 2 H), 7.53 (d, J = 8.5
Hz, 2 H), 7.18 (d, J = 8.4
Hz, 2 H), 6.80-7.10 (m, 5 H), 6.54 (s, 1 H), 4.25 (t, J = 4.7 Hz,
2 H, -PEGOCH2CH
2CO),
3.80 (s, 3 H), 3.50-3.78 (m, PEG) ppm. Compound 4a: 1H NMR (500 MHz, CDCl3): δ = 8.11
(d, J = 8.0
Hz, 2 H), 7.67 (d, J = 8.0
Hz, 2 H), 7.53 (d, J = 8.5
Hz, 2 H), 7.18 (d, J = 8.4
Hz, 2 H), 6.80-7.10 (m, 5 H), 6.54 (s, 1 H), 4.11 (s, 3
H), 3.88 (s, 3 H) ppm. GC/MS: m/z = 388
(M+).